Skip to contents

Function to create AIF compatible dataset.

Usage

binary_label_dataset(data_path,  favor_label, unfavor_label,
                     unprivileged_protected_attribute,
                     privileged_protected_attribute,
                     target_column, protected_attribute)

Arguments

data_path

Path to the input CSV file or a R dataframe.

favor_label

Label value which is considered favorable (i.e. “positive”).

unfavor_label

Label value which is considered unfavorable (i.e. “negative”).

unprivileged_protected_attribute

A unprotected attribute value which is considered privileged from a fairness perspective.

privileged_protected_attribute

A protected attribute value which is considered privileged from a fairness perspective.

target_column

Name describing the label.

protected_attribute

A feature for which fairness is desired.

Examples

if (FALSE) {
load_aif360_lib()
# Input dataset
data <- data.frame("feat" = c(0,0,1,1,1,1,0,1,1,0), "label" = c(1,0,0,1,0,0,1,0,1,1))
# Create aif compatible input dataset
act <- aif360::binary_label_dataset(data_path = data,  favor_label=0, unfavor_label=1,
                            unprivileged_protected_attribute=0,
                            privileged_protected_attribute=1,
                            target_column="label", protected_attribute="feat")
}